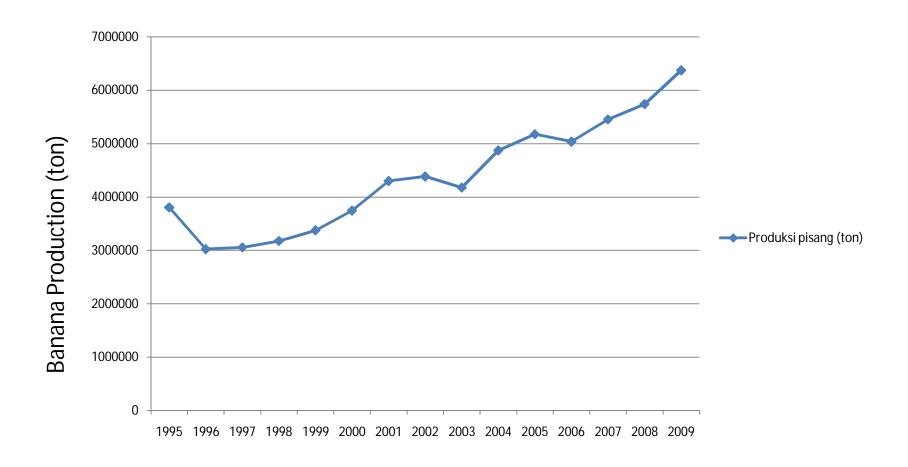
MANAGING BANANA DISEASES - THE INDONESIAN EXPERIENCES


Siti Subandiyah

Dept. of Entomology and Plant Pathology Faculty of Agriculture, Universitas Gadjah Mada Bulaksumur, Yogyakarta, 55281 Indonesia ssubandiyah@yahoo.com

ECONOMIC IMPORTANCE OF BANANA IN INDONESIA

- Banana contribute 35% in production of tropical fruits in Indonesia
- Grow every where, mostly small holders, few banana industries
- Desert and cooking bananas with many varieties

BANANA PRODUCTION IN INDONESIA 1995-2009

Source: Indonesian Statistic Center Agency

Banana Germ Plasma in Yogyakarta

More than 300 accessions of banana collection

Nursery of Banana Industry

Backyard Banana Production

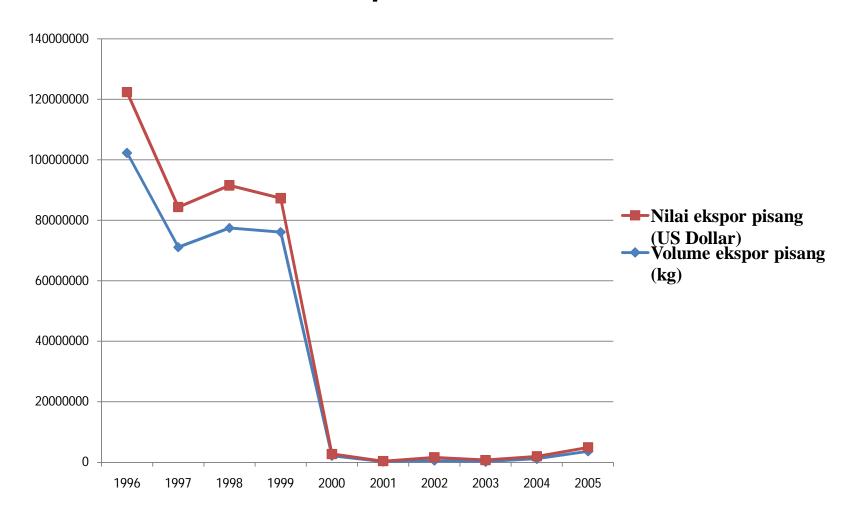
Field Production of Banana Industry

Banana Production

Banana Market

Production Constrains

 Scatter small holders and not intensive cultivation make it difficult for wide area production management

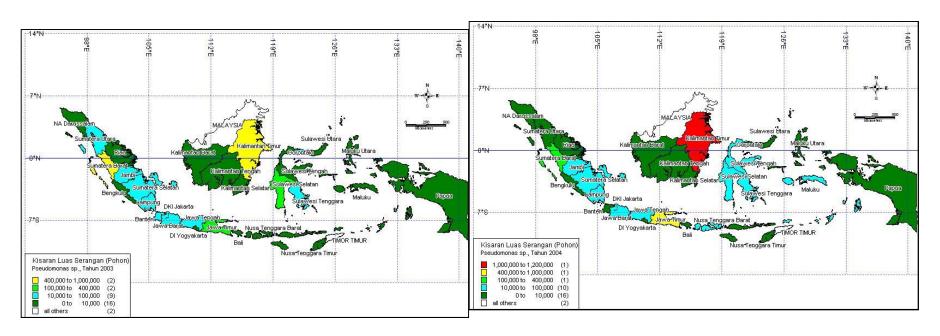

Low quality of fruits

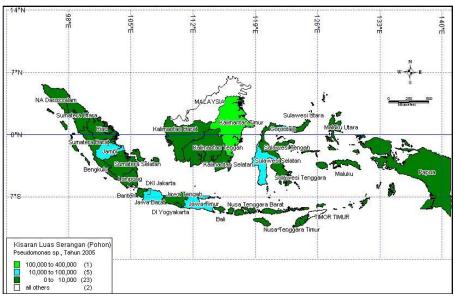
Diseases spread

Major Diseases

- Banana Blood Disease (Blood Disease Bacterium / BDB)
- Fusarium Wilt (Fusarium oxysporum fsp cubens / Foc
- Bunchy Top Virus (Banana Bunchy Top Virus / BBTV)
- Leaf spots (Sigatoka etc)

Banana Export Volume


Source: United Nations Commodity Trade Statistic Database


Disease Intensity of Banana Wilts in South Bengkulu District

		Disease Intensity
No	Banana Cultivar	(%)
1	Kepok /Saba	46.86
2	Ambon / Gros Mitchel	71.67
3	Jantan	1.49
4	Tanduk / Plantain	5.56
5	Rawas	
6	Muli	Pisang Muli 0
7	Kapar	0

Source: BPTP West Sumatera

Map of BDB Distribution in Indonesia 2003 - 2005

Banana Wilts – Blood Disease

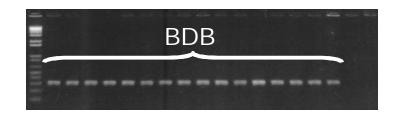
Banana Blood Disease in East Kalimantan

Observation of banana wilts in the field

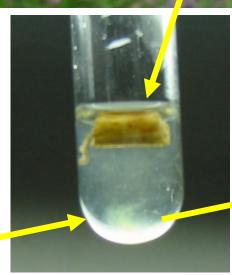
Blood Disease

Blood Disease

Blood Disease Bacterium

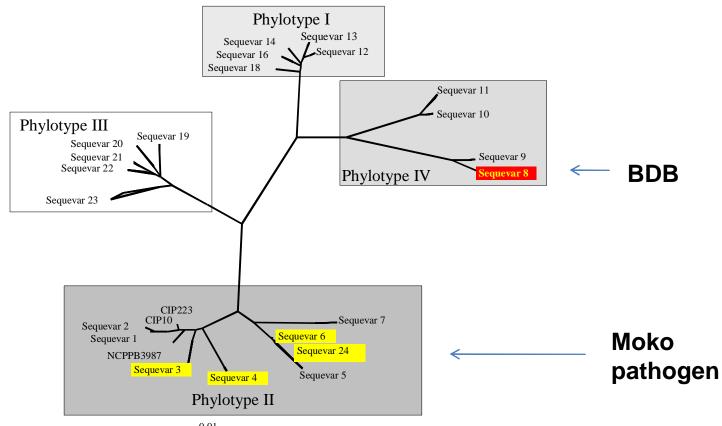

- Firstly described in 1920s found in Celebes (Sulawesi island) as Pseudomonas celebensis
- As the member of Ralstonia solanacearum species complex in Phylotype IV (Moko pathogen in Phylotype II)
- Slow growing on agar medium with the \varnothing 2-3 mm in 5 days on CPG medium
- Not infectious on Solanaceaous plants
- Survive with mild symptom on *Heliconia spp. and Canna spp.*

Blood Disease Bacterium continue

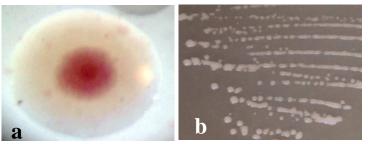

- Soil borne but the population declines sharply in few months
- Insect transmitted (by pollinators, decay visiting insects, banana pests)
- In the field cooking banana (kepok, saba, pisang awak etc) were found with highly incidence of BDB infection compared to dessert banana

BDB Diagnostic PCR

The primer sequences are in press


Ooze

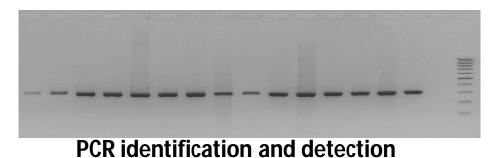
BDB (Phylotype IV) vs Moko pathogen (Phylotype II)


Species	Ralstonia solanacearum Species Complex								
Phylotype	Phylotype I		Phylotype II		Phylotype III		Phylotype IV		
Distribution	Asia, Africa, South America		America (race 2 – worldwide)		Africa		Indonesia, Japan, Australia		
Biovars	3	4	5	2T	1	2	2T	1	2T 1 2 P. sy
Division	Division 1		Division 2		2		2		
Multi-locus Genotypes	8 9 10 12 1 13 14	15 21 1 16 22 17 23	19 20	29 30 31 32 33		27			
Races		1 4	5		2	3		1?	1?

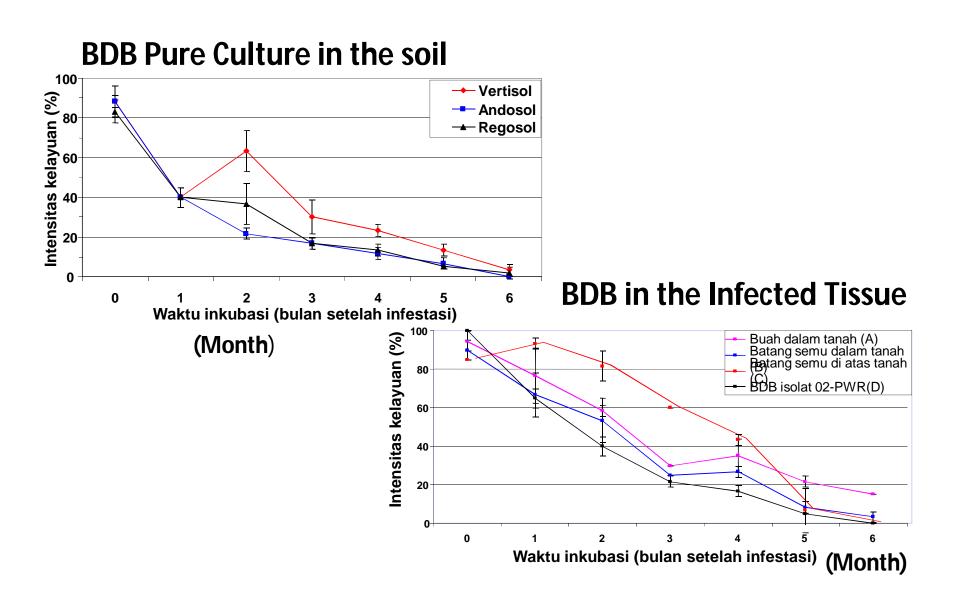
The phenotypic based schemes (biovars and races) and genotypic based schemes (RFLP analysis and phylotyping). (After Gillings and Fahy (1994)

BDB vs Moko Pathogen continue

Phylogenetic tree generated from partial endoglucanase gene sequence data s howing the phylogenetic relationships of sequevars and phylotypes (Fegan et al in press)



Slow growing on CPG/TZC, **Ø** 2-3 mm in days


Survive with mild symptom on *Heliconia* spp and *Canna* spp

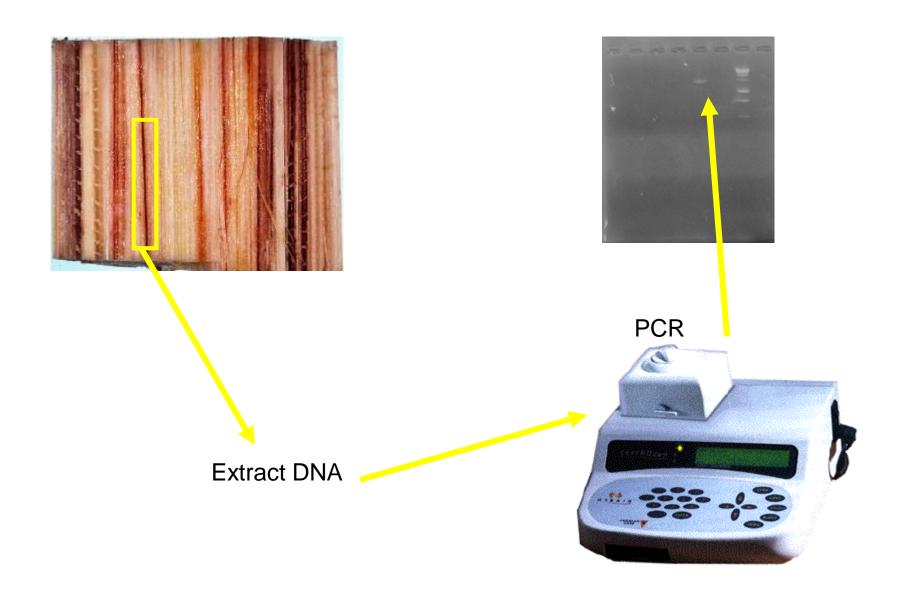
Blood Disease Bacterium

Only infectious on banana, not infectious on *Solanaceaous* plants

Survival of BDB in the Soil

Fusarium Wilt, Fusarium oxysporum fsp. cubense (Foc)

Comparison of BDB vs Foc diseases

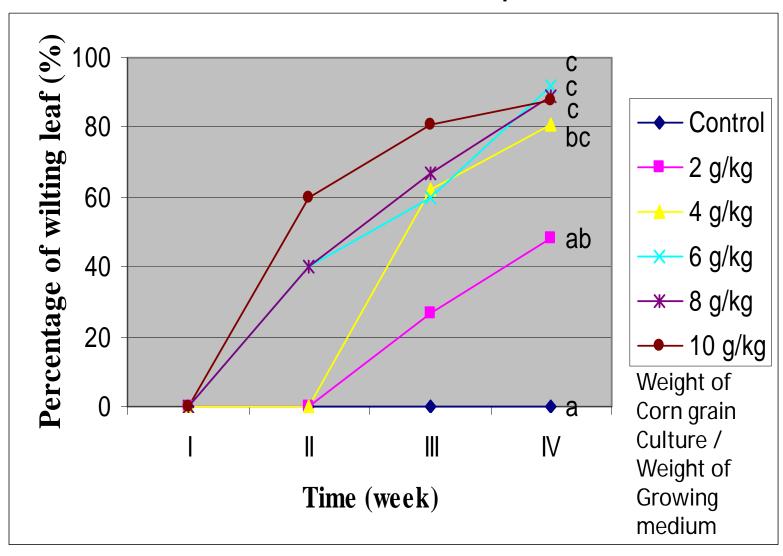

	Fusarium Wilt	Blood Disease
Organism	FOC (Fungus)	BDB (Bacterium)
Ooze from		
infected tissue	NO	YES
Found in Fruit	NO	YES
Point of Entry		Male flower (bracts, via
into Plant	From soil	insects), injury, and soil
Spread in Plant	Root→inner cortex of butt→Pseudostem	Bract→True stem→Fruit pulp→→Butt→Stem of Sukcer
Resides in Soil	Yes	Yes, shorterterm
Resides in Plant		
Material	Yes	Yes, short term

	Fusarium Wilt	Blood Disease		
Resistance to	Exists (No externally visible indicator)	NON , only escape		
Leaf Symptoms (Unbunched)	Yellow leaves, start at the bottom and work up leaving dead leaves at bottom, affected leaves retain normal shape	Top Leaves Green, mid leaves yellow, Bottom leaves green, affected leaves bow downwards		
Leaf Symptoms (Bunched)	"unbunched"Same as	Last leaf emerged is yellow		
Matt Survival	Mother plant dies, suckers survive (Sucker dies in very susceptible varieties)	Mother plant dies and suckers may survive		
Internal symptoms - Fruit	NO	YES		
Internal symptoms - True Stem	NO (only occur under extreme conditions)	YES (?mother to daughter spread, ?soil spread)		
Internal symptoms - Pseudostem	Leaf sheathes, long unbroken red-brown streaks	NIL or YES accationally		
Speed of Symptom development	Slower	Faster		
Odour from sever symptoms	"Fusarium" smell (TR4)	NIL (not to be confused with "Erwinia" smell of soft rot)		
Most common infection site	Root	Male Flower Bract		

Host origin, cultivars, host genotype from race 4 isolates of Foc and isolate grouping based on VCGs

Isolates	Host origin	Cultivars	Host genotype	VCGs
Bnt2	Yogyakarta	Pisang Awak	ABB	01213/16
Mln1	Yogyakarta	Pisang Kepok Kerau	ABB	01213/16
Srg1	Central Java	Pisang Raja	AAB	01213/16
Bgl6	Central Java	Pisang Raja	AAB	01213/16
Bgl3	Central Java	Pisang Kepok	ABB	01213/16
A13	Yogyakarta	Pisang Ambon	AAA	01213/16 ^c
Gnk3	Yogyakarta	Pisang Ambon	AAA	0120
Wsb5	Central Java	Pisang Ambon	AAA	0120
Lmp1	Lampung (Sumatera)	Pisang Raja Nangka	AAB	01213/16
Kjg1	East Kalimantan	Pisang Ambon	AAA	01213/16

Tropical race 4 - FOC PCR



Foc TR4 PCR identification

The primer sequences are in press

Inoculation of Foc at different population density, the higher the concentration the higher the disease severity and the shorter the incubation period

Incidence of Foc samples found in Sumatera, Bangka, Java, and Kalimantan

No	Type of Banana	%
	Pisang Ambon	
1	(Gros Mitchel)	44
2	Pisang raja	15
3	Pisang Kepok	15
4	Pisang Awak	20
5	Cavendish	5

- Field trial showed that Barangan was highly susceptible towards TR4 of Foc infection dying in the first year after field planting, whereas cultivar Kepok Kuning, Puju and Panjang were more resistant and survive until the fifth year but declining
- Resistance mechanism of banana cultivar was correlated with peroxidase activity in the plant roots. The higher peroxidase activity, the more resistance the banana cultivar towards TR4 of Foc infection

Source: Arif Wibowo 2011

MANAGEMENT OF BANANA WILT DISEASES

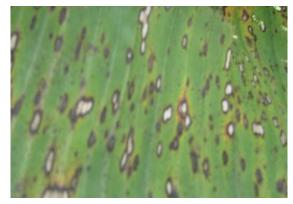
- Integrated control with wide area management is needed
- National Banana Wilt Task Force was established in Indonesia early 2000
- Eradication by herbicide or kerosene mat injection, burning or digging the infected mats/tissues
- Isolating the infected mats/lands

MANAGEMENT OF BANANA WILT DISEASES continue

- Disease Free seedlings (from tissue culture) for replanting and never use suckers obtained from infected mats or endemic area
- Optional planting dessert banana in BDB endemic areas with flower/fruit bagging and male flower de-budding
- Avoid planting dessert banana in Foc endemic areas
- Planting cooking bananas in Foc endemic areas and plant rotation.

MANAGEMENT OF BANANA WILT DISEASES continue

- De-budding male flowers after fruiting
- Bagging the fruits using insecticide plastic/paper bags
- Biological control using fluorescent pseudomonads, *Trcichoderma*, *Giocladium* etc with compost application, however the results may be not consistent
- Intensive cultivation with organic fertilizers (composts, humus etc)
- Disinfection of agricultural tools used in the field


Flower de budding and fruit bagging to protect from visiting insects

Banana Leaf spots

Virus Diseases

Bunchy Top

Mosaic

Aknowledgement

Appreciation and gratefully thank you to ITFnet for inviting and providing travel grant to joint this workshop

TERIMA KASIH